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iNitrogen and sulfur-substituted dioxetanes exhibit dramtically lower
activation energies for decomposition compared to the corresponding oxygen-
bearing dioxetane. A mechanism involving intramolecular electron-trasfer

processes is proposed for the cleavage of these unstable dioxotanes
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Richard S. Eandley, Alan J. Stern, and A. Paul Scbaap
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Abstract: Nitrogen and sulfur-substituted dioxetanes exhibit dramatically lover activation
energies for decomposition compared to the corresponding oxygen-bearing dioxetane. A
mechanism involving intramolecular electron-transfer processes is proposed for the cleavage
of these unstable dioxetanes.

1,2-Dioxetanesl of various structural types have been prepared by the cyclization of

8-bromohydroperoxides 2a and by the addition of singlet oxygen to activated alkenes.2b,c

Alkyl- or phenyl-substituted dioxetanes are relatively stable and decompose at elevated

temperatures to give predominantly triplet excited states. I In contrast, dioxetanes bearing

aryl moieties with low oxidation potentials are significantly lIsa stable and decompose with

enhanced singlet chemiexcitation efficiencies.
3

Photooxygenation of vinyl ethers affords alkoxy-substituted dioxetanes that exhibit

properties similar to those of alkyl-substituted dioxetanes.4 For example, cfs-3,4-diethoxy-

1,2-dioxetane4a,b and cfr-3,4-diethyl-l,2-dioxetane 4c both have half-lives of several hours at

25"C and thermolyze with Arrhenius activation energies of 24.4 and 24.5 kcal/mol, respec-

tively. Hovever, dioxetanes derived from enamines5 and vinyl sulfides 6 have been reported to

be qualitatively much less stable, undergoing rapid decomposition below 0"C. No mechanistic

explanation has been offered for the striking differences in the thermal stability of these

dioxetanes. In order to systematically evaluate the effects of heteroatom substituents, a

series of structurally related dioxetanes 2 has been prepared. We provide herein the first

report of activation parameters and rates of decomposition for nitrogen- and sulfur-

substituted dioxetanee. An intramoleculer electron-transfer mechanism is proposed for the

cleavage of these unstable peroxides.
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Alkenes la-d were synthesized by acid-cataiyzod condensation ot benzoin with

1,2-ethanediol, 1,2-ethanedithiol, 2-hydroxyethanethiol, and N,N-diethyl-l,2-ethanediamine.
7

Solutions of dioxetanes 2a-d were prepared in CH2C12 by photooxygenation of la-d at -78*C with

polystyrene-isobilized Rose Bengal 9 and a 400-W high pressure sodium lamp. All four dioxe-

tanes produce indirect chemiluminescence upon thermolysis in o-xylene in the presence of

9,10-dibromoanthracene (DBA).4 a Dioxetanes 2a, 2c, and 2d were further identified by 1H KKR

at -78C and by their cleavage to 3a, 3c, and 3d which were fully characterized. Photooxy-

genation of lb at -78C in CH2C 2 followed by warming to ambient temperature afford$ not only

3b (44%) but also benzil (31%). Product yields in this latter case were determined by HPLC.

Several groups have previously noted that the decomposition of sulfur-substituted dioxetanes

can yield mixtures of products derived from C-C and C-S bond cleavage.6,1 0 It should be

emphasized that benzil is not formed from the decomposition of 2c.

Rate constants for the decomposition of 2a-d were determined from measurements of the

decay of chemiluminescence intensity of 10-4-10- 5 M solutions in o-xylene in the presence of

10-5 M DBA. The isothermal decompositions were monitored for at least three half-lives and

were first order in all cases. Rates were found to be independent of DBA and dioxetane

concentration. Activation parameters were calculated from Arrhenius plots.

Table 1. Activation Parameters and Rates of Decomposition for 1,2-Dioxetanes 2a-d.

Dioxetane (X,Y) Temp. Range, C Ea t Log A krei (25-C) t/ (25C)
kcal/mol

2a (0,0) 70.0 to 90.3 24.8 12.4 lb 115 h

2b (S,S) -11.5 to +20.5 18.8 13.6 3.96 x 105 1.05 s

2c (S,0) -11.5 to +21.5 17.4c 12.2 1.66 x 105  2.49 s

2d (MeN, MeN) - 0.7 to +29.6 16.6 11.1 5.12 x 104  8.09 s

aCalculated from the Arrhenius plots. bCorresponding to a rate constant of 1.67 x 10-6 - I1
in o-xylene at 25C. cRates of decomposition for 2c were the same if the direct emission

was monitored in the absence of DBA.

A :In addition to the indirect "blue" chemiluminescence that can be observed visually from

la-d in the presence of DBA, we have also found that injection of a cold solution of the mixed

oxygen-sulfur dioxetane 2c into o-xylene at ambient temperature results in an intense "yellow"

chemiluminescence (hoax a 553 nm). This direct emission is of particular interest because

cleavage product 3c is not detectably fluorescent. Figure I shows a chemiluminescence

spectrum of 2c in o-xylene obtained at -11C with a Spax Fluorolog spectrofluorometer.

Correction was made for the decay of total light intensity during the scan by use of a second

detector in a ratio mode. This luminescence is also observed in acetonltrile (X,,x - 533 Mm)

and in oethylcyclohexane (max * 561 no). A plausible explanation for this unusual emission

involves an intrasolecular exciplex. 11 Coto has reported chemiluminescence frm an exciplex

generated by the thermolyals of an indole-substituted dioxetane. 3d However, In that case

4miaion free the fluorescent indole group as well as the exciplex wae observed.
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Figure 1. Chemiluminescence spectrum of dioxetane 2c in air-saturated
o-xylene at -11C, corrected for the decay of total light
intensity during the scan.

Several lines of evidence indicate that "stable" dioxetanes such as 2a decompose by a

stepwise process involving homolysis of the peroxide bond to form a diradical with subsequent

C-C bond cleavage.1 ,3g Clearly, an alternate mechanistic explanation is required to account

for the distinct properties of nitrogen- and sulfur-substituted dioxetanes 2b-d. It might be

proposed that these dioxetanes decompose via a concerted pathway. Heteroatom substituents

would be expected to stabilize a transition state in which unsaturated carbonyl carbons

bearing a partial positive charge are developed. One measure of the electron-donating ability

of a substituent is the a+ value (p-MeS, -0.16; p-Me, -0.31; p-NeO, -0.78; p-Me2N, -1.7).12,13

On this basis, however, one would have predicted oxygen-substituted dioxetanes to be less

stable than sulfur-bearing dioxetanes. Also arguing against a concerted mechanism involving

both ring carbon atoms is the observation that a single sulfur atom destabilizes the dioxetane

to the same degree as two sulfur moieties.

We, therefore, propose a mechanism for the decomposition of 2b-d involving initial

intramolecular electron-transfer from the heteroatom to the peroxide a* orbital. 1 5 This

mechanism requires that the stability of the dioxetane be related to the oxidation potential

of the heteroatom substituent. Consistent with this suggestion are the present results which

A " show that dioxetanes bearing easily oxidized groups such as amines or sulfides (E;X: Et3N ,

+0.96 V; Me2S, +0.88)16 are dramatically less stable than a similar dioxetane with an alkoxy

substituent possessing a such higher oxidation potential (Zox Et20, ) +2.5 V).16

Additional experiments in this area are in progress. Of particular Interest are the

mechanistic details of the chamiexcitation process, exciplex emission, and dual decomposition

modes of 2b.

Zb-d lX 3b-d • bana(fern bus)

Ph Ph
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